ARIUS GRAEFFEI AND ARIUS ARMIGER: VALID NAMES FOR TWO COMMON SPECIES OF AUSTRALO-PAPUAN FORK-TALLED CATFISHES (PISCES, ARIIDAE)

by Patricia J. Kailola*

Abstract

Summary Kailola, Patricia 1. (1983) Arius graeffel and Arias armiger: valid names for two common Australo-Papuen lork-tailed calfishes (Pisces. Ariidse). Trans. R. Soc. S. Aust. 107(3), 187-196, 30 November. 1983.

Arius sracifei Kner \& Steindachner 1866 is a senior synonym of Arius australis Gunther 1867 and Ariks urmiger De Vis 1884 is a sentor synonym of Arius stirlingi Ogilby 1898. Diagnostic descriptions and distributions of A. gracffet and A. armiger are presented. Taylor's (1964) conclusions that A. uustralis, A. stirlingi and A: leptaspis trepresent one species are not supported.

Key Wonds: Northern Australia, Papua, fork-tailed catfishes, Ariidae,

Introduction

Alhough fork-tailed catfishes are abundant in the rivers, estuaries and muddy coastal waters of northern Australia and New Guinea, the laxonomy of this fauna is poorly undelstood. The need for a serious study of the ramily is reflected in the history of the species listitgs for Australia; only 8 species are common to the listings of McCultoch (1929total of 12 species), Munro (1957-11 species) and Whitley ($1964-13$ species).

My studies over the past few years have revealed the existence of eighteen valid species in Australia: six of them are undescribed. and the nomenclature of the described species is confused. The present paper seeks to untrivel the confusion surrounding two common species and to redefine those species by a new sombination of characters.

In his study of the fishes of Arthem Land, Taylor (1964) suggested that Arius australis Gïnthet 1867, A. leptaspis (Bleeker 1862) and A. stirlingi Ogilby 1898 may tepresent only population divergence within one species. Lake \& Midgley (1970), Lake (1971) and Pollard (1974, 1980) followed Taylor and considered A. leplaspis (Bleeker) a single widely-dispersed Australo-papuan catfish (although Lake cautions that a detailed stüdy of large numbers of varying sizes of eatfish over the whole tange of their distribution is needed to settle the matter).

[^0]
Materials and Methods

In this study, I have endeavoured to examine specimens. from the recorded range of each species.

The specimens reported here are located in the following collections: American Museum of Natural History (AMNH); Australian Muscum, Sydney (AMS); British Museum (Natural History) (BMNH) ; CSIRO Division of Fisheries (CSIRO); Macleay Museum, University of Sydney (MMUS): Museum National d'Histoirc Naturelle, Paris (MNHN) ; Naturhistorisches Museum, Vienna (NMW); Queensland Museum (QM); Rijksmuscum van Natuurlijec Historic, Leiden (RMNH); South Australian Museurn (SAM): Western Australian Muscum (WAM).

Measurements were made from the left sude of the body with needle-point calipers to the nearest 0.1 mm , but in the case of very large fishes, standard lengths (SL) were ohfained by use of a mm-graduated ruler. The methods of measurement and counting follow Hubbs and Lagler (1958) with the following additions: width of the maxillary tooth bandbroadest width measured across curve of the tooth band: length of the maxillary tooth band-longest distance of band, usually across each lateral arm; "interdorsal" fin spacedistance between insertion point of last dorsal fin ray and anterior of the adipose fin: length of occipital process-from base of the bone where it meets the dorsomedian head groove to its most posterior point where it meets the predorsal plate; breadth of occipital processwidest distance at base ol the process where it meets the main body of the bead shield:
maxillary barbel length-distance Prom insertion point of the barbel to its tip. free verte hral count-total nimfer of vertebrae from the lirst unfused vertchar hehind the Weberian Apparates 16 , the las vertebra at the tail base (urostyle inchuded), made from x-rays.

Counts, using as needle probe, were made of the dorsal anal and pectoral fin elements and of the gill rakers

Results

I lind that A. graelfei, A lepronpis and A armiger are all valid species. Furthermore. the names Atrius mustralis Günther 1867 and A. fitrixid Casteloat 1878 are junior subicetive synonyms of A. gracfei Koer \& Steindachner 1866: the nane Arins stirlingi Ogilby 1898 is a junior subjective synonym of A. armiger De Vis 1884.

Tiaylor (1964) identified 12 ariid specimens from Oenpelli as A. atotrativ, one from Roper River and 14 from East Alligator River as $A_{\text {i }}$ leptaspis. He lacked A. stirlingi specimens. From information I supplied on disfinguishing chatacters, Janct Gomon (U.S. National Muscums) examines Taylor's specimens and reporied that the 12 Oenpelli specimens identified is A. unstralis are A. leptaspir Blecker, and that the Roper River and East Alligator River spectmens identified as A. lepraspis are an undescribed Arilss (Arius sp 11 found in Preshwater from the Roper River twestwand to the Ord River (W,A.). Taylor's figures (pp. 74. 80. 82) and species analysis are therefore mat of A, anstralis ($=$ gracfici) (see Table I and Figure 2 for comparisons. What Lake Midgley and Pollard have called A. leptarpis therefore, could have been either A. groufivi, A. Leplaspis, Akins sp. 1 or A. armiser. Pollard has reproduced Taylor's figure of A, lepmaspis (1980: 89). Grant (1978) consistently fol. lowed Munto (1957) and ned Neogrins arrtrolis.

Arius kraeffel Kner \& Steindachner 1800

FIGS 1, 2: Tables 1. 2.
Arins arme/fei Kinet \& Steindachner 1867: 383. Jig. 12 ISimmat Joculity doubtful, probably northem Australia)
Ayme maktoute Gimpther 1867: 103, lig. Asti
Islang, Humer River, N.S.W.)
Arius cuntisit C'astelran 1878: 236 (Moleton Bay, Guesmblad I
Alaneral exanimat: Holotype of A. probefol: NMW af 142, unknown hacality, 252 mom st, two syntypes of A, eustrofis: BMNH $1866,2,13: 4$. Ash Island, 1lamber R., N.S.W.- mo date, Scoff,

375 mm SI and BMNH $15666,0,19: 7$, same data, 380 mm SL. syatype of A. ctoriait: MNIIN B.693, Mloreton Bay. Qld, no date Curisis 144 mm SI; and the additional specimers from the following locations: Na, W. 6. Clarence R. $242-336$ mon SL: 3, MMUS 1.154, Richmond R.. 197-207 mm SI Qld: 4, QM 1.12001, 1.430, 1.9835, 1.0836. Brishane R., $177-273 \mathrm{~mm}$ SI; 2, QM 1. 16734. L16740, Boyne R., 117 in0l $297 \mathrm{msm} \mathrm{SL}, \mathrm{I}$, L.8606, Dawsof R., 171 mm Sl. I, Chapman R.. 236 mm SL: I, OM 1.12758, 1finders R. near Maxwellems 340 mm SI: N.I: 6, Jabira \& Long LEarys Billationg, $178-323$ mot SL . 3 , Ditl R... $83-310 \mathrm{~mm} \mathrm{S1.:} \mathrm{W.A:=} \mathrm{1} ,\mathrm{SAM} \mathrm{F}$.4242 . Ord R. 93 mm SI: 3 . AMNH urneg, King R. 74-118 mnt SL: 1. WAM P.25597-002, Fitroy R, 329 mm SL: 3, AMNH unteg., Yeedia Creeh, $88-113$ mim SL:; 1. WAM P, 22876-001, Dampier 358 mm S1: 4. AMS 1,18217-006, Maitland R.. 77-88 mm SL: I WAM P. $5807-101$. Fortesene R. 376 mm S1: 2. AMNH unteg, Astibuthon R. 85 and 292 गum St: New Gulined: 1 . haw Gulf of Papua, 289 mm SL: $2, \mathrm{RMNH}$ unteg, famoer Lake, 261 and 333 mm SL.
Defintions: the combination of: raker-like processes present on the back of all gill arches; palatal teeth villiform and in transverse series of four oval patches, patatine putches farger than vomerine patches, maxillary barbels never reathing further than opposite base of dorsal fin spine: free vertebrae 45-48.
Description (based on 50 specimens): D.1.7. A. 15-19 (mean 17.4); P.I.10-11: GR (first arch) $17-22$, mean 19 (total) of which $6-8$ on upper timh: GR (last arch) 16-22, mean 19.1 (totaf); C. primaty rays $7+8$: V. 6 . number of free vertebrace 45-48.

Body robust, stongate (Fig. 1. Tahle 1. 2): anterior protile straight, moderately steep. elcvated slightly hefore dorsal fin; mouth mode rately broad and slightly curved. its width 2.12.7 (mean 2.4) in head lengits snout sharplyrounded. moderately leshy upper lip extending: beyond mouth gape, teeth usualty ennecsted when moulh closed: shallow groove may be present on snowt between nostrils; hind nostrils ovate-clipticat. anterior map just concealing opening eyc ovate dorso-laleral, free of orhil and positioned $1-1$ telf bye diameter before mid-lengit of head Jaw teeth in afehed curved hands, villiform: finc and sharp, depressible and in many. (6-9) irregular series: length of maxilary tooth band $5.2-9.2$ (mean 7.1) in its forealth; edentulons space separates each side of mandibulary rooth band. Four patches of small, tine, sharp teeth on palate arranged transverscly: vomerine patches ovate or pounded. separated at midline, neticeably smaller that onter oxal palatine patches; with age vomerine and palatime patehes of coll fuse
into one unit on one or hoth sides of palate or all four may conlesce to form single broad patch: two narrow smooth-edged longitudinal shin llaps well hack on smooth palate.

Head shicld (Fig. 2) fincly and somewhat sharply granulated, granules arranged in series atong each side of dorsomedian head groove, radiating outwards and over occipital process

Tame 1. Refative hody proporions of Arius gractiei and Arius simlingi.

Charicter	Arins gruedei			Taylor's A. amstralis	п	Arius armiger	
	n	range	тс:an			ranue	mean
heand in SL	50	$3.0-3.8$	3.4	$3.0-3.5$	30	$3.2-4.0$	3.5
cye 1. in head 1.	50	3.7-8.4	6.1	7.6-10.1	311	5.9-9.9	7.4
eye 1 . in snout 1 . cye in bony inter-	50	1.4-3.2	2.3		30	1.9-3.6	2.7
cye in bony inter- orbital willh uccin. procest width	48	1.1-3.0	2.1		28	1.6-3.3	2.3
in process length	41	1.0-2.1	1.4		27	1.1-19	1.5
D. spine in hd. f.	47	1.11-2,2	1.6	2.0. 2.4	25	1.10-1.4	1.2
P. spine in hd. 1. adipuse fin base in	46	1.0-2.0	1.5	1.9-2.2	26	1.2-1.7	1.4
D. lin buse adimose fin base in	50	1.0-2.0	1.3		311	0.8-1.9	1.2
depth in its lenglt	50	1.6-2.6	2.1		29	1.5-2.4	1.9
predorsal in S1,	50	2.4-2.8	2.6	2.5-2.7	311	2.6-3.0	2.8
interdorsal in St.	50	3.1-4.1	3.6	3.3-4.2	30	3.3-4.3	3.8
longest barbel in SI. head height in head	$51)$	2.5-5.8	3.8		30	1.8-3.3	2.5
width	48	1.1-1.7	1.4		30	1.1-1.5	1.3
length mx toonh band in its width	35	5.2-9.2	7.1		26	+.3-106	8.3
cye in SL	51	13,7-26.6	21.2		30	20.1-3.3.3	26.2
mouth width in head 1. bony interorb. width	27	2.1-2.7	2.4		1.5	2.11-2.3	2.1
inl licald lengith S.L. (mm)	48	$\begin{gathered} 2.5-3.5 \\ 74.2-380.0 \end{gathered}$	2.9	201-435 mm	28	$\begin{gathered} 2.9-3.9 \\ 7+11-285.0 \end{gathered}$	3.2

Table 2. Perchtage of standard longh (SI) for specimens of Arius graefiei amel A. armiger.

Chamacter	A. Grmeffei n		A. grocifer holutype	A. amsuralis syntypes		A, cimbinii syntype	At armiger. ก		A. armicer synlypes	
Sl, range (mm)		74-376	252	275	380	$14+$		74-285	13.4	148
head length	46	26-34	32	29	32	311	28	25-31	27	28
eye diameter	46	4-7	5	4	4	6	28	3-5	4	4
P linspine 1.	42	15-23	211	19	19	22	25	$17-23$		23
i) lin spink 1.	43	14-24	17	17	17	20	25	20-32		
adinome lin base 1.	46	5-11	8	K	6	10	28	8-13	8	5
animl lin base 1.	46	11-16	12	1.3	14	13	28	18-22	20	20
dorsal fin buse 1.	46	$9-13$	10	10	12	12	28	10-13	11	11
interdursal space	$4{ }_{1}$	24-32	31	27	33	27	28	2.430	27	30
predorsal 1.	46	35-41	34	37	39	39	28	34-39	35	37
longeat banbet	46	17-39	23	24	23	26	28	27-56	50	41
lensith occipital process	37	7-11	8	8	S	1	25	7-10	8	8
bony incerorhital space	4	8-13	11	10	11	11	26	7-10	y	10
caudal pednucle alepth	th	6-4	7	8	8	7	27	$8-9$	8	7
candal preancle lengh	46	13-18	15	15	14	15	27	13-19	17	16
snoul 1 .	16	913	13	110	13	11	28	8-12	9	10
heidd height	45	14-19	14	16	19	16	28	14-20	15	14
head widih	45	19-28	22	22	2.5	22	28	$19-23$	21	20
internostril distince	25	7-12	9	9	10	8	17	6-15		
I. longest anal fin ray	40	$12-28$	17	12	17	12	23	13-19	16	1.4

Fig. 1. Lateral view of Arius graeffei, 193 mm SL. AMNH field no. DR1969-94, 95; Hann R., W.A.

Fig. 2. Head view from above of Arius groteffei, 228 mm SL. SAM 4693, CJarence R., N.S.W.
from end of groove and laterally on head shield radiating from centres of small groups; interorbital fat, grannlated head shield beginning above middte of eye; dorsomedian head groove narrow, straight-sided and moderately deep, originating above or slightly behind posterior margin of eyc, terminating at base of occipital process. Sides of head smooth or slightly venulose, Median keel of oceipital
process not prominent, process roughly triangular with straight sides, 1.0-2.1 (mean 1.4) longer than wide, its slightly rounded end contiguous with crescentic granular predorsal plate. In many specimens, noticeably those obtained from rivers. thick skin obscures head shield pattern. Humeral process rugose or with granulated striae, triangular and acute, horizontal or slightly oblique, extending one-third of the distance along pectoral fin spine length and ossified anteroventrally. Axillary pore present. Barbels thick, slightly flattened: maxil* lary barbels longest. extending at least to head edge, usually to above pectoral fin base or midway along fin spine, in juveniles (less than 130 mm SL) ending below dorsal fin spine: mandibulary barbels may reach pectoral fin base; mental barbels reach about halfway between eye and pectoral fin base.

Rakers of first gill arch half as long as gill filaments; 12-20 (mean 16.7) short raker-like processes along back of first gill arch, 15-23 (mean 18.7) along back of second gill arch. 15-21 (mean 17.1) along back of third gill arch. Fleshy pad present on back of upper limb of each gill arch that of second arch best developed.

Spines of dorsal and pecforal fins moderately thick with pattern of Iongitudinal striae, tips with short filaments: anterior margin of each spine rough with low denticles and 3-6 low antrorse serrae towards tip; pósterior margin of dorsal spine smooth but low serrae towards tip in several specimens; posterior margin of pectoral spine dentate with 12-19 regularlyspaced stout sharp serrac. Longest dorsal ray 2,5-3,5 times length of last ray. Adipose dorsal
fin above middle of anal in, its convex matgin smooth: anal fin margin concave posteriorly. Jongest ray 2.4-3,3 times length of last ray. Ventral fin shape variable: in males, base narrow, fin rays rarely reaching anal fin origin -usually ending well before: in females, base broad, fin rays frequently reaching 4 th-6th anal lin ray, inner (5 th + 6th) elements of ventral fin becoming thickened and developing a piod or hook with sexual maturity. Caudal fin lobes moderate, pointed upper lobe slightly longer than lower lobe.

Caudal peduncle moderately thick, depth 1.6-2.6 (mean 2) in its length, Lateral line almost straight to tail base where it curves upward.
Fresh colour variable: dark brown, dece blue, fawn or dark ochre above (sometimes with irridescence), becoming yellowish, cream or white on undersides, sometimes brown-stippled over belly. Maxillary barbels black or dark brown, chin barbels either dark or pate; specimens from Vietoria and Daly Rivers. sometimes "piebald"-blotehed black and white, black patches even extending into mouth and over fins (e,g. Victoria R. specimen AMS L.20857-001. 305 mm SL). Fins uniform tan or bluish, densely and finely stippled dark fawn to black, undersides of pectoral and yentral fins cream, base of anal lin and tasi few rays eream. Iris yellow. Peritoneum pale but faintly stippled dusky. In preservative the blue and irridescence are lost.

Fig.3. The dismibution of Arius grachefi (based on all material examined).

Distribution and Habitat (Fig. 3): Found from the Hunter River (N.S.W.) on the east coast, north and westward (Qld, N.T., W. A.) to as far south on the west coast as the Axhburton River and the Abrolhos Islands (AMS 1.7035). Not comman in New Guinea (Gulf of Papua coast, south-western New Guinea coast? Jamoer Lake), Arius practfei is generally abundant in coastal draining fivers and streams. from above tidal limits to estuaries and adjacent coastal waters.

Arius armiger De Vis 1884
 FIGS 4, 5; Tables 1. 2.

Arius armiger De Vis 1884: 454 (New Britainlocality doubtfol, probably morlfern Ausimalia) Arins stirlingi Ogilby 1898:281 (estuary of Adeliside R., N.T.)
Material etanmed: Two syntypes of A, amiger
QM 1.3089, urknown lacality. 134 mm SL and QM 1,3088 , unknown locality, 148 mm SI; and 28 additional specimens from the following loeations: Qld: 1, QM I.867, "Queensland coast". 215 mm SL; 1. AMNH 17717, same dala, 178 mm SL: 3. Moonkan Re, 259-285 mm SI; 2, QM 1.11789 , Karumbs 105 and 111 mm SL: 2. CSLRO C. 3800 and C. 4378 , Norman R. at Karumba, 161 and $188 \mathrm{~mm} \mathrm{SL} ;$ 2, QM 1.11632. Bypoe R, 79 and 89 mm SL N.T: 2, SAM F, 1094 and F, 1095 . Adelaide R, 221 and 281 mm SL; 2. Murgenella Creek, 102 and 111 mun SL: 1. East Alligator R mouth. 74 mm SL L, AMNH unreg, Victoria $\mathbf{K}_{2},{ }_{2} 7$ mam SL; $W_{i}, 5$, Klag \mathbf{R}. near Wyndham. 174-265 mm SL; Nem Gmitea: 1. Moinamu, Papua, 129 mm Sl; 1, Kubiri Creck. Papua, 160 nun SL: 2, Baimuru, Papua, 142 and 257 mm SL: 1, CSIRO A. 3043 , Kerema Bay, Papua, 93 mm SL: 1. Kerems, Pupha, 155 mm SL.
Defintition: distinguished by combination of: absence of raker-like processes from back of first and usually second gill urches; palatal teeth small and sharp and in transverse series of lour oval parches; dorsal fin spine noticeably longer than pectoral fin spine; maxillary barbels reaching dorsal fin at least; anal fin with 22-25 clements.
Deveription (based on 30 specimens): D.1.7: A.22-25 (mean 24): P.1.9-10. GR (first arch) 16-22, mean 19 (foral) af which $7-8$ on upper limb: GR (last areh) $16-22$, mean 18.6 (total); C. primary rays $7+8 ;$ V.6: number of free vertebrac 43-45.

Body slender, elgonate (Fig. 4, Table 1, 2): anterior profile straight to occipital process base whence distinctly conves; mouth moderately broad and stightly curved, its width 22.3 (mean 2.1) in head length, upper jaw evenly eurved, symphysis of lower jaw slightly but distinetly elevated: snout rounded, mode-

Fig. 4. Lateral view of Arims arntiger. 161 mm SI CSIRO C3800: Norman R., Qld.
rately thickened lips extending slightly beyond mouth gape such that maxillary tooth band exposed when mouth closed; no (or rarely) shallow groove on shout; hind nostrit ovate-eltiptical, lew frifls laterally, anterior flap barely concealing opening: eye ovate-oblong. dorso-lateral, orhit noticeably ohlique; sye only free of othit antero-ventrally and positioned 1-3 an eye diameter before mid-length of head.

Jaw teeth in curved bands, villiform: siender and sharp, depressible and in 5-9 series: breadth of maxillary tooth band 4.3-10.6 (mean 8.3) in its length; narrow edentulous space separates each side of mandibulary tooth band. Four patches of low, sharp and stout or bluntly-pointed conical teeth on patate arranged transversely: vomerine patches rounded. always well separated at midine: outer palatine patches larger and elongate-oval. contiguous or adjacent to vomerine patches. Short angular skin flap well back on smooth palate,

Head shield (Fig. 5) smooth anteriorly. posteriorly and laterally feebly grauulated: striate ridges posteriorly each side of dorsomedian head gronve; sides of head and snout smooth and venulose; head shield heginning before eye: interorbital flat or slightly concave; dorsomedian head groove natrowly elliptical and moderately deep, originating slightly behind posterior eye margin and teminating at base of occipital process. Finely granulated striae radiate in parallel series over oecipital process from its base, median keel sharp and strong, process 1.1-1.9 (meath 1.5) longer than wide, sides slightly concave, hindborder emarginate or indented, contiguous with cres.

Fyg. 5. Head view from above of Arius armiper. IX8 nim SI. CSTRO C4378: Norman R., Qld
entic predorsal plate. Humeral process sinooth or rugose, triangular and short, Jower horder concave, heavily ossified antero-ventrally; process horizontal or slightly oblique, extending + distance along pectoral fin spine Iength, Axillary pore moderately large. Barbels slender, flattened: maxillary barhels longest. always reaching dorsal fin and often as far ats ventral fin origins; mandibulary bathets reach opposite occipital process or to below middorsal fin; mental barbels usually extend pasi gill opening to buse of pectoral fin.

Rakers of first gill arch two-thirds Jength of gill filaments; back of first arch smooth; back of second arch often smosth, otherwise with I-4 small raker-like processes on upper limb: 16-21 (mean 18.6) moderate processes aleng back of third arch. Thickening of uppet limb of each gill arch developed as ficshy pad on second limb. Spines of dorsal and pectoral fins slender, almost smooth, tips with filaments -that of dorsal spine noticeably long; anterior margin of dorsal spine roughened, even granular, of pectoral spine almost smooth: 5-9 low antrorse sefrac towards tip of each spine: posterior margin of dorsal spine with 14-19 low sharp serrae, posterior margin of pectoral spine with 17-22 regularly-spaced stout strong servac. Longest dorsal fin ray 2.9-4. times length of last ray. Adipose fin above middle of atral fin, margin smooth, truncate or slightly convex; anal fin margin straight or slightly emarginate posteriorly, longest ray 2,3-3.6 times length of last ray. Ventral fiur shape variable: in males, base narrow, fin rays rarely reaching anal fin origin; in females, base broad, fin rays reaching opposite 3 rd-8th anal fin ray, inner (5 th +6 6th) elements becoming thickened and developing a fleshy pad wilh sexual maturity. Cuudal fon tobes stender, tapered, upper lobe slightly longer than lower.

Caudal peduncle compressed, depth 1.5 2.4 (mean 19) in its length. Lateral tine much branched, especially anteriorly, line almosi straight to tail base where it curves upward.
Fresh colour. Readily recognisable by its coppery or golden brown or bronze head and upper sides, shading to creamy yellow below. Fins coppery-fatw or dusky yellow, pale orange hasally and finely stippled grey, margins and fitaments charcoal, undersides of pectoral and ventral fins cream; iris coppery; all barbels dark brown. Peritoneum pale grey or white. Carter (in lith. Jan. 1981) noted fresh colouration of three mature femate specimens from the Moonkat River as very pale greyish-pink dorsally, ereamy below; fins slightly pink and broadly edged black; ventral fins creamy white, In preservative, the pink. orange and sheen are lost.
Dismibution and Habitat (Fig, 6): In Australia found from Edward River system. Cape Vork westward along the Gulf of Carpentaria, Northern Territory and as far as the King River (W.A.) in New Guinea from Yule Island to the Digoel (Hardenberg. 1941) and Lorentz (Weber, 1913) Rivers in the west.

Fig, 6. The distribution of Arius armiger (hased on all material examined and authentic Literaitire records).

Aftus armiger is abundant in shallow coastal waters and lower estuarine zones, not extending into fresh water.

Discussion

A. Arius mracfied

Arius graeflei was described in a paper by Kner \& Steindachner read betore a meeting ol the Austrian Academy of Sciences on 5th July 1866 and published that year in the Society's "Sitzungberichte" (vol. 54). The specimen, from "Samoa Inseln", was subnumbered 2103 in the Godeffroy Museum collection.

On 24th January 1867, Günther read before the Zoological Society of London a paper in which he described Arius australis based on three specimens sent to the British Muscum by Krefft from Ash Island in the Hunter River, N.S.W. These syntypes are catalogued BMNH 1866.2,13;4 (275-mm SL), 1866.6. 19:7 (380 mmsL) and $1866.6 .19: 8(300 \mathrm{~mm}$ SL.).

Günther (1909) presents the figures and an abbreviated description of Krer \& Steindachner's Arius graeffici frism "Samoa" Günther did not view the specimen and perhaps the wide geographical diserepaney of stated type loselity led him not to remark how similar was A. stacfiet to his own species A. ausiralis.

In the Australo-papuan region A. graeffei was first mentioned by Paradice \& Whitley (1927) who stated "the only species of marine catfish met with" in the Sir Edward Pellew Istand Group ($15^{\circ} 40$ S, $136^{\circ} 30^{\circ}$ E) was Arius (Tachysurus) graeffei Kner \& Steindachner. considered "A new record for Australia" (p , 80). They also (p.97) suggested that Kner \&

Steindachner meant "East Indies" instead of "Samoa" as the type focality.

I have exammed a 245 mm SL specimen presented to the Ausualian Museum by Paradice in 1923 from the Pellew Group (and likely to be the specimea he and Whitley identified as A. gractfei), Labelicd Arius (Tachysarus) gracffei (AMS IA.1484) it is actually an example of Arius proximus Ogilby 1898.

Paradice \& Whitley's record of A. graeffec now Kner \& Steindachuer may have led McCulloch (1929:59) to inclute A. gractle it Kner \& Steindachoer in his checklist of Austratian fishes, stating "Samon (locality doubtful). North Australia, Indo-Pacifie?" Whittey (1940) realised that the Pellew Island specimen was A. proximus, listing it in the synonymy of that species. He also questionably consdered A. proximus Ogilhy a junior synonym of A. graeffei Knet \& Steindachner. later however (1941) he listed A. graeffei, A. proximus and A. unstralis us valad Anstralian species, Taylor (1964), although apparently unaware of Whitcy's 1940 correction, arrived at the same conclusion and questionahly referred Paradice \& Whilley's A. gracffel to A. ptoxinzus Ogilby, but did not liel A. greceflei as a valid Australian species.

Kner \& Steindachner likened Abins sraellei to Arius gagerödes (Valenciennes, 1840). Fowler (1928: 61) wein even further, stating: "in its roughly granular head and spines, and espersatly the dentition, it approwhes PimeIndus sona Buchanan-Hamilton" lsiel and immediately placed A araetlei as a iunior synonym of Tachesurus sona (BuchananHamilton. 1822) Esiel type Jocality estaries of Bengal. Weber \& de Beaufort (1913) and Chandy (1953) regarded A. pagorides questionably valid; Misra (1976) appears to follow Fowler who again (1941) plased as synonyms; A. seana (Buchanan-Hamilton, 1822) |siel A. gagorides (Val. 1824) [sic]. A. rachipomus Vat. 1839 and A. grachei Kiner \& Stsindachner. Mckay (QM) recently examined the type specimens of A. gaporides and A. rachiponnus on my betals and found that they are synoryms of A. sotter, and that A. spacflei is a disnitictly different speceses.

Macleay (1881) recorded Arins garondes from Port Datwin, his descruption mostly eopied from Günther (1864). Mucleay's specimen became the holotype of Atiue mastens Ogithy 1898 (MMUS F.153). Interestingly,

Ogilby (1898a) considered A wagorites and A sona conspecific (i.e. predating Fowler).

In Austratian titerature, the name A. graeflei appears only onee more: as Pararius graeffer (Whiley, 1964).

Kner \& Steindaehner's specimen of A. gracflei was located in the Naturhistorisches Museum, Vienna (NMW 67 152) and I have compared it with cimilar-sized specimens of A. ausiralis Günther from Australia. The A, gracifei holotype is in reasomably good condition, and judged by the length and condition of the ventral fins, is a femate

Ahnelt (NMW) (in litt.) says that large sections of the Godelfroy collection were sold last century and further, that it is not uncommon for Godeflroy fishes to have incorreet locality data. Kner \& Sicindachner (186it) described fishes not incladed in the earlier werks hy Graffic on material in the Godeflioy collection. Athough mast of the coflection camc from Fiii, Samoa and the Phochix Islands there is every reason to believe that the 252 mm SL specimen of A. srae/jei did not, and was one of a miscellancous group of matural history specimens presented to the Museum by a now untraceable donor. Arius graelfel is thus a semier symonym of A. australis Giinther 1867.

A tius curivii Casteman 1878 is also a fanion synonym of A, gracifet. I have examined a syntype (MNHN B.693, 144 mm SC) which is ill poor condition. Castelnau stated (1878: 237) "I have several specimens. but all badly preserved; the latgest is nearly fiffeen thehes long. the others are about six zinches." The type locality is Mureton Bay. It has not been possible to locate the remaining Castelnat specimens.

B. Arias armiger

The type focality of Arfus armiger De Vis 1884 is sated to be Naw Britain (Biamaralk Archipelago, New Guinea). Doubts about the validity of thes type locality arose bectuse; (1) Ariss urmiger has remained (until now) known only from the types; (2) there are nos subsequent reeords of catfishers from New Britain deapite extonsive fishery surveys around the island during the past 12 years hy the Papua New Guinca Fisheries Research \& Survey Diviston: (3) New Britain, a mainly mututanous istand has short, fast-fowing rivers which do not form extensive estuaries: (4) 100 fishes of the family Arwlat have been teended enst of the main New Guines island.

The rype specimens of Ariar armiger De Vis at the Queensland Muscum (1.3089, 134 mm SL, and L.3088. 148 mm SL) on examination proved to be specimens of the common Papuan and nocthern Australian estuarine catish Arilss stirlingi Ogilby 1898, which therefore becomes a jutior synonym of A. armiger De Vis 1884.

De Vis (1884) states: "To Government agents and caplains employed in hiring hands for the plantations, 1 am indebted for several opportunities of examining fish from the prolific waters around the Isfiands from whicif the labour supply is derived. In the collections thus incidentally made . . ." (p, 445). The fishes deseribed in this paper were repurledly collected from New Hebrides, South Scas, "peobably South Scas", Doke of York's Group, Bank's Group. Api and New Ireland It is probable that specimen information on the "incidental collections" pade was occasionally confused, henee the type locality of New Britain for A. armiger.

Unsuceessful attempts were made to obtain records of the voyages from which De Vis obtained specimens, Even so, it seems likely that the A. armiper types were collected on the norih Quecnisland coast or the Papuan coast on atl outward or relurn voyage.

A search was made for the single type specimen of A. stirlingt Ogilhy, although Robests (1978) had been unable to trace it in the Queenstand and Australian Museums. The specimen is not in the National Museum. Victoria (Gomon, in litt, 1981) and I could not find it in the collection of the Macleay Muscum and of the South Australian Muscum. Ogilhy stated (18986) that his 270 mm long specimen of A. stillingt was one of a small collection of fishes sent to him by the South Australian Museum athorities from the extury of the Adelaide River. N.T.. There are
two specimens of A armiger in the S.A. Muscum from the Adelaide River collecled in 1928. Onc (F.1094) is 221 mm SL 265 mm TL: the ather ($\mathrm{F}, 1095$) is 281 mm SL .359 mm TL.

In 1908, Ogilby proposed a new genus Nemapterys, to atcommodate triur stintingi. However this allocation is not supported by niy studies, and I conclude that A stirlingi is a junior synonym of A. armiger.

Indicative of the disinterest in these fishes is the fact that A. afmiger (as Nemapterys stirlingi) was recorded from Papua anly 19 years ago (Manro, 1964).

Avknowherigments

In my seareh for information inany people have generously given their assistance. I am indebted to Marie-Louise Bauchot (MNHN), Alwynne Whecler (BMNH), Rainer Hacker and H. Ahnett (NMW), the secretary of the Zoological Socity of Londen. of the Austrian Acadenty of Seiente, of the Linnean Society of New South Wales. Sohn Glover (SAM). Janet Gomon (LSSNM), Marlin Ginmon (NMV), Rolly Mckay (QM), Han Nijssen (2MA) and MMUS stalf. For their assistance in sending me specimens, both from institutionk and especially obtained on my behalf. I wish to thank Hamar and Mary Midgley, Darryl Grey, Rolly McKay, Noel Morrissy. Alan Haines. Mike Rimmer Keith Bishop and Sally Allen, Bill Rooney, Dave Carter, Lee Turner Tim Davis, Marinus Boeseman and M. J. P. van Oijen, John Paxton, Ian Munro, Barty Hutchins, and especially Norma Feinberg (AMNH). Rolly McKay has been particularly helpfut in supplying specimen information and consiructive manuseript criticism. Finally thanks are due to my husband and son for their paticuce and to Michacl J. Tyler (supervisor, University of Adelaide).

References

Casthinat. F. In, (1878) Austratian fishes. New or litue hnown species. Proc. Tinth. Soc. N.S.W. 2(3), 225.248,
Chapbr, M. (1953) A hey tor the identification of the callishes of the gemus Tachysurus La copede, with is cataloguc of the specimens in the collection of the Indian Museum (Zool. Surv.), Rec. Indian Mus. 51, 1-18, 3 pls.
Dr. Vis, C. W. (1884) Fishes from South Sea Talands, Proc, Limut, Soc N.S.W. 8. 445-457
FOWLiB, H. W, (1928) The fistes of Ocemian

P. (1941) Contributions to the biology of the Philippine Atchipelago and adjacemt regions. Bitl. U.S. nath. Mus. 100, v.13, x, 879 pp.
Grant. E. M, (1978) Guide ta fishes. Dept Primary Indusiry, Brisbane. 768 pp , 4 th edition.
GÜNTHER. A. (1864) Cataloghe of the fishes in the British Mruseum. Volunce 5, xxli, 455 pp .

- (1807) Descriptions of some new or lifteknown species of fishes in the collection of the Bribish Mustam. Proc, Zool, Soc. Tomih, 99-104. - (1909) Andrew Garrett's Fische der Südsee. J. Mies. Ciodeflray. 8(16). $261-388$.

Haroenbek. J. D. F. (1941) Fishcs of New Guinea, Trabla $18(2), 217-231$.

Hubbs, C L. \& Lagiler. K. G. (1958) Fishes of the Great Lakes Region. Bull. Cranbrook Inst, Sci. 26, xi, 213 pp.
Kner, R. \& Steindachinit, F. (1866) Neue fische aus dem Museum der Herren Joh C. Godeffroy und Sohn in Hamburg. Sizb. Akad. Wiss. Wien, 54(1), 356-395.
Lake, J. S. (1971) Freshwater fishes and rivers of Ausiralia, (Nelson: Melbourne) 61 pp . fresh Midgley, S. H. (1970) Reproduction of freshwater Ariidac in Australia, Aust. J. Sci. 32(11), 441 .
Macleay, W. (1881) Descriptive catalogue of the fishes of Australia. Proc. Linn. Soc. N.S.W. 6(2), 202-387.
McCulloch, A. R. (1929) A check-list of the fishes recorded from Australia. Mem. Ausi. Mus. 5(1), 1-144.
Misra, K. S. (1976) The fauma of India and adjacent countries. Pisces (second edition) vol. JJI, Telcostomi: Cypriniformes; Siluri. Government of India, pp. xxi, 367, pls 1-XV.
Munro. I. S. R. (1957) Handbook of Australian fishes, no. 9, pp. 37-40. Fish. Newsl. 16(3), 15-18.
(1964) Additions to the fish fauna of New Guinca. Papua New Guin. agric. J. 16(4), 141186.

Ogllby, J. D. (1898a) New genera and species of fishes. Proc. Linn. Soc. N.S.W. 23(1), 3241.
(1898b) New genera and spccies of fishes. Ibid. 23(3). 280-299.

- (1908) New or little known fishes in the Queensland Muscum. Arm. Qd Mus. 9(1), 1-38.

Paradice, W. E. J. \& Whitley, G. P. (1927) Northern Territory fishes. Mem. Qd Mus. 9(1). 76-106.
PoliArd. D. A. (1974) The freshwater fishes of the Alligator River, "Uranium Province" area (Top End. N.T.) with particnlar reference 10 the Magela Creek catchment (East Alligator River Systemi). Australian Atomic Energy Commission, 77 pp .
(1980) Family Aridae. Estuarine Salmon or Fork-tailed Calfishes. In R. M, McDowall (ed.), Freshwater Fishes of Soutl-eastern Australia. (Reed: Sydney) pp. 89-90.
Roberts. T. R. (1978) An ichthyological survey of the Fly River in Papua New Guincit with descriptions of new species. Smithsonian Conrrib. Zool. 281, vi, 72 pp .
Thylor, W. R. (1964) Fishes of Aruhem land. Rec. Amer. Aust. Sci. Exped. Arnhem Land 4. 45-307.

Whber, M. (1913) Nova Guinea. Késultants de l'Expedition Scientifique Néerlandaise à la Nouvelle-Guinée en 1907 et 1909 sous les auspices de Dr H. A. Lorentz. Vol. IX Zoologie. livraison IV. (E. J. Brill: Leiden) pp. 513-613.

- \& de Reauport, L. F. (1913) The Fishes of the Iudo-Austrulian Archipelago, Vol. 2. (E.J. Brill: Leiden) 404 pp .
Whither. G. P. (1940) [llustrations of some Australian fishes. Aust. Zool. 9(4), 397-428.
- (1941) Ichthyological notes and illustrations. Ibid. 10 (1), 1-50).
- (1964) Presidential address. A survey of Australian ichthyology. Proc. Linh. Soc. N.S.W. 89(1), 11-127.

[^0]: * Department of Zoology Universty of Adelaide. G. P.O. Box 498, Ndelarde. S. Aust. 5001 .

